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Abstract Entropy is a fundamental thermodynamic property that has attracted a wide
attention across domains, including chemistry. Inference of entropy of chemical com-
pounds using various approaches has been a widely studied topic. However, many
aspects of entropy in chemical compounds remain unexplained. In the present work,
we propose two new information-theoretical molecular descriptors for the prediction
of gas phase thermal entropy of organic compounds. The descriptors reflect the bulk
and size of the compounds as well as the gross topological symmetry in their struc-
tures, all of which are believed to determine entropy. A high correlation (r2 = 0.92)
between the entropy values and our information-theoretical indices have been found
and the predicted entropy values, obtained from the corresponding statistically signif-
icant regression model, have been found to be within acceptable approximation. We
provide additional mathematical result in the form of a theorem and proof that might
further help in assessing changes in gas phase thermal entropy values with the changes
in molecular structures. The proposed information-theoretical molecular descriptors,
regression model and the mathematical result are expected to augment predictions of
gas phase thermal entropy for a large number of chemical compounds.
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1 Introduction

The concept of measuring topological information content [1] or, information content
of graph using Shannon’s measure of information [2] was introduced in the 1950’s
along with the ‘negentropy’ principle [3]. However, attempts [4] to correlate entropy
and information theory for chemical species were made much later in the next decade
based on order-disorder considerations in living systems [5]. It took another decade
before linear combination of graph-theoretical invariants (LCGI) scheme for the ther-
modynamics of alkanes was introduced [6] which included entropy measurements
by considering graph like state of matter. Subsequently, several graph-theoretical
approaches found important applications in chemistry and biology [7–13] leading
to dramatic increase in interest for predicting physical / physicochemical proper-
ties as well as biological activities of small organic compounds considering graph-
theoretical models of molecular structures [14–17] primarily using topological indices
[18] derived from them. Notwithstanding, inference of entropy for large number of
chemical compounds in thermodynamic context and computational point of view has
remained a challenge.

Development of mathematical models to measure entropy of chemical compounds
from their molecular structures using information theoretical formalism has been
attempted only for particular classes of compounds [4]. Therefore, development of
predictive models for more generalized set of compounds containing both cyclic
and acyclic structures is desirable. From structure-activity relationship point of view,
graph-theoretical indices encapsulating information content of molecular graphs have
been used to explain molecular properties of different series of compounds and high
degree of correlations were obtained in these studies [16]. Such indices were derived
considering automorphism group of the vertices [19], topological distances between
pairs of vertices [20–22], neighborhood of vertices [23–27] as well as from other graph-
theoretical considerations [16]. The usefulness of such indices seems to stem from their
additive-constitutive character, akin to physicochemical properties like partition coef-
ficient [28] which is an important parameter in determining biological activities. An
information-theoretical topological index (ITTI) accrue from a basic advantage that
information-theoretical formalism closely resembles the equation of computing phys-
ical entropy [4]. Therefore, it is of interest to see how physical entropy can be related to
information content values obtained from individual molecular structures [29]. Such
predicted values may find applications in various important areas of research in chem-
istry and biology such as in studies on the thermodynamic properties of gas-phase
hydrogen bonded complexes [30]. However, for developing useful predictive regres-
sion models from structure-activity correlation studies it is important that meaningful
descriptors related to activity are used. For using topological indices, the indices may
be derived in such a way that structural aspects which are believed to determine entropy
are reflected in the indices and consideration of weighted graph models of chemical
structures for deriving meaningful indices may be expected to serve the purpose suit-
ably.

In the present study, we have developed a regression model using ITTIs as molecular
descriptors for the prediction of gas phase thermal entropy (S0) of organic compounds.
We have created a training set of 100 compounds, having acyclic and cyclic structures,
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for developing the model taking data from the literature [31]. Since size, volume (bulk)
and symmetry are believed to be the major structural features that determine entropy
[29,32], two measures of ITTIs namely ‘information content’ and ‘total information
content’ have been defined keeping those aspects in mind. One set of these measures
has been derived taking atomic numbers as vertex weights and have been categorized
as ‘TopoPhysical Molecular Descriptors’ [12]. Another set has been derived on the
basis of the shortest chemical path(s) emerging from each vertex and connecting all
other vertices of a chemically labeled molecular graph. These indices are believed to
reflect some kind of topological symmetry [33–35] present in a molecular structure
and have been categorized as ‘TopoChemical Molecular Descriptors’ [10]. Two total
information indices together have produced significantly high correlation (r2 = 0.92)

with S0 and the predicted values of a set of 10 test compounds, obtained from the
corresponding regression equation, have been found to be very close to experimentally
observed values [31]. This seems to indicate the usefulness of the proposed ITTIs and
the regression model for the prediction of gas phase thermal entropy of chemical
compounds. In addition, we have also provided a mathematical result in the form of
a theorem and proof for total information-content measure for use as an indicator of
certain changes made in molecular structures. It appears that the regression model and
the mathematical result may provide acceptable predicted gas phase thermal entropy
values of a large number of chemical compounds.

2 Methods and theoretical results

2.1 Vertex weighted molecular graph

A vertex weighted molecular graph VW(G) is a connected graph [36] representing the
structural formula of a chemical compound where some numerical values are assigned
to the vertices, representing the atoms in the molecule, as vertex weights.

2.2 TopoPhysical Molecular Descriptor (TPMD)

If the weights assigned to the vertices and / or edges of a molecular graph corre-
spond to certain physical properties of the atoms and chemical bonds, a molecular
descriptor derived from such a graph model may be called TopoPhysical Molecular
Descriptor [12].

2.3 Vertex labeled molecular graph

A vertex labeled molecular graph VL(G) is a connected graph representing the struc-
tural formula of a chemical compound where the vertices are labeled according to
some physical and / or, chemical characteristic of the atoms they are representing. In
this work, we will use the chemical symbols such as ‘C’ for carbon, ‘O’ for oxygen,
‘H’ for hydrogen etc. as vertex labels.
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2.4 Chemical path

A chemical path p(u, v) between two vertices u and v in a chemically labeled molecular
graph VC(G) may be defined as a sequence of chemically labeled vertices connecting
u and v in VC(G). For example, some chemical path having the connectivity of the
(Carbon–Oxygen–Hydrogen) may be represented by (C–O–H).

The shortest chemical path between two vertices u and v is the path which has the
minimum number of chemically labeled vertices including u and v. It may be noted that
a connected graph containing cycle(s) may have more than one shortest chemical path.

2.5 TopoChemical Molecular Descriptor (TCMD)

If the labels and / or, weights assigned to the vertices and / or, edges of a molecular graph
correspond to certain chemical properties of the atoms and chemical bonds, molecular
descriptors derived from such graph models may be regarded as a TopoChemical
Molecular Descriptor [10].

2.6 Information content of graph

Shannon’s measure of information content [2] of a system is obtained by partitioning
the elements of the system into disjoint classes on the basis of an equivalence relation
defined on the elements of the system. So, if there are n elements in a system S and
they are partitioned into k disjoint classes having ni elements in the ith partitioned
class, i = 1, 2, …, k, then information content of the system, Is, may be obtained from
the following equation:

Is = −
∑

i

pi log2 pi

= −
∑

i

ni

n
log2

ni

n

=
∑

i

ni

n
log2

n

ni
(1)

where pi is the probability of finding an element in the ith partitioned class, and pi =
ni
n ≥ 0,

∑
i pi = 1 and the measure is expressed in bits. However, for convenience,

this measure is often done taking ‘log10’ and that has been followed in this work.
Using (1), a measure of ‘total information (TI) content’[3] of a system S may be

obtained from Eq. (2):

T Is = n × Is (2)

Following the same principle, information content of a graph may be computed
considering a partition of graph elements, say vertices, into disjoint classes on the
basis of an equivalence relation defined on the set of vertices. It is also possible that
the weights assigned on the vertices of a graph be considered to form a discrete system
and a partition scheme is defined on the sum of these weights.
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2.7 Information content of vertex weighted graph

Let Zi be the atomic number of the ith atom in a molecule, i = 1, 2,. . ., n, where
n is the number of atoms in the molecule. Considering Zi as the weights on the
respective vertices, one can get a vertex weighted molecular graph model VW(G) of
the compound. In order to have the measure of information content of this vertex
weighted graph, we proceed as follows:

Let,

Z =
n∑

i=1

Zi (3)

Now, considering, Zi values as a partition of Z into n disjoint classes, we can use
Shannon’s information formula [2] to have a measure ‘information content on atomic
number’ IZ using Eq. (4):

I Z [Vw(G)] = −
n∑

i=1

Zi

Z
log2

Zi

Z
(4)

Having this measure of information content on atomic number, one can also have a
measure of total information content [3] on atomic number, TIZ and may be obtained
from:

T I Z [Vw(G)] = Z × I Z (5)

2.8 Information content on shortest chemical path

Two vertices u and v in a vertex labeled molecular graph VC(G) are said to be equivalent
if,

a) number of shortest chemical paths between u and all other vertices of VC(G) is
the same as those between v and all other vertices in VC(G);

b) for each shortest chemical path of length L from u there is one shortest chemical
path of length L from v;

c) chemical labels of u and other vertices in that shortest chemical path from u is the
same as those of v and other vertices in the shortest chemical path from v.

Now, from the equivalence of two vertices of VC(G) satisfying above conditions, one
can have a partition of the vertex set of VC(G) and a measure of information content [5]
on shortest chemical path, ICP, for VC(G). Thus, ICP for VC(G) may be given by (6):

I C P [VC (G)] =
∑

j

Xi

X
log2

X

Xi
(6)

where Xj is the number of vertices in the jth partitioned class and X = ∑
j

X j
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VW(G) of methanol: VC(G) of methanol:
H C O H
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Fig. 1 Vertex weighted graph VW(G) and chemically labeled graph VC(G) of methanol. The atomic
numbers are indicated in bold in the former, while the hydrogens are labeled for distinction in the latter

Subsequently, total information content [3] on shortest path, TIC P may also be
obtained from:

T I C P [VC (G)] = X × I C P [VC (G)] (7)

2.9 Illustration

Computation of the indices IZ, TIZ, ICP and TICP is illustrated below (Fig. 1) taking
methanol as an example:

In VW(G) of methanol, the respective atomic numbers have been put as weights in
the vertices representing the atoms in the molecule. With one carbon, one oxygen and
four hydrogen atoms in this molecule, the sum of the atomic numbers Z is:

Z[VW(G)methanol] = 6 + 8 + (4 × 1) = 18

Therefore, the IZ and TIZ for methanol may be obtained using (4) and (5):

IZ[VW(G)methanol] = (8/18)log10(18/8) + (6/18)log10(18/6)

+4 × (1/18)log10(18/1)

= 1.9749

TIZ[VW(G)methanol] = 18 × 1.9749

= 35.5490

Again, in VC(G) of methanol, chemical paths of different lengths (L) from its
vertices are:

H1, H2 and H3 H4 C O

H–C: L 1 × 3 H–O: L 1 C–H: L 1 × 3 O–H: L 1

H–C–H: L 2 × 2 H–O–C : L 2 C–O: L 1 O–C: L 1

H–C–O: L 2 H–O–C–H: L 3 × 3 C–O–H: L 2 O–C–H: L 2

H–C–O–H: L 3
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Looking into these chemical paths, one can find the equivalences and partition the
vertex set of WC(G) of methanol into disjoint classes and can compute the information
content indices using Eqs. (6) and (7). Clearly, the partition of the six vertices is (H1,
H2, H3), (H4), (C) and (O) i.e., (3,1,1,1).

Therefore,

ICP[VC(G)methanol] = (3/6)log10(6/3) + 3 × (1/6)log10(6/1)

= 1.7920

TICP[VC(G)methanol] = 6 × 1.7920

= 10.7550

2.10 Theorem-1

If P1 = N(n1, n2, . . ., ni , . . ., nk) and P2 = N + 1(n1, n2, . . ., ni+1, . . ., nk) be the
partitions of two positive numbers N and N + 1 respectively, then

TI(P2) > TI(P1)

where TI stands for ‘total information’ as used in Eq. (2) and ni , i = 1, 2, …, k, are
positive integers, k ≥ 2.

2.10.1 Proof

TI(P2) − TI(P1) = (N + 1)log(N + 1) − Nlog N − (ni + 1)log(ni + 1) + nilogni

= Nlog(N + 1) + log(N + 1) − NlogN

−nilog(ni + 1) − log(ni + 1) + nilogni

= log
[{

(N + 1)N+1 × (ni)
ni
} / {

NN × (ni + 1)ni+1
}]

= log
[ {

N(1 + (1/N)}N/NN
}

× {(N + 1)/ni + 1}
×{(ni)

ni/ni{1 + (1/ni )}ni
]

= log
[ {

(1 + (1/N))N/1 + (1/ni)
ni
}

× {(N + 1)/(ni + 1)}
]

= log[{(N + 1)/(ni + 1)} × {(2 + (1/2)(1 − (1/N))

+(1/6)(1 − (1/N)(1 − (2/N)

+· · ·/2 + (1/2)(1 − (1/ni))+(1/6)(1 − (1/ni))(1 − (2/ni))}]>0.

Hence the theorem.
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3 Results and discussion

The aim of the present study is to develop statistical regression model by using mean-
ingful molecular descriptors as well as a mathematical result that could be used to
predict gas phase thermal entropy (S0) for a large number of organic compounds.
For developing a useful regression model, we have defined two sets of information-
theoretical topological indices (ITTIs) reflecting important structural features like size,
bulk and topological symmetry of molecular structure which are believed to determine
gas phase thermal entropy of organic compounds [29,32]. In carrying out this study,
we have taken 100 compounds from the literature [31] comprising of both cyclic and
acyclic structures. The idea is to use the entropy (S0) values and the values of the
ITTIs, defined in this paper, of these compounds as a training set for finding correla-
tion between S0 and ITTIs and develop a regression equation model which can be used
to predict gas phase thermal entropy for a large number of organic compounds. The
data comprising of S0 values and those of two ITTIs, TIZ and TICP, for 100 training
set compounds are given in Table 1.

Since it is important to use meaningful molecular descriptors which can reflect
molecular bulk, size as well as some kind of structural symmetry, we have found
total information content indices more suitable since they include the sum of atomic
numbers as well as the number of atoms in a molecule and not merely their partition
into disjoint classes which are measured from IZ and ICP. By carrying out correlation
studies, it has been found that both the total information content indices correlate
highly (r2 ≥ 0.86) with S0 values of the 100 training set compounds and therefore
both these indices may be considered as suitable molecular descriptors for building
up multiple regression models. By doing that, an improved correlation (r2 = 0.92)

is obtained taking two total information content indices, TIZ and TICP together as
variables and the predicted S0 values are also close to the observed values for most
of the compounds (Table 1). The trend is also apparent from the index values and S0

(observed) values of the compounds. For example, the values of both TIZ and S0 for
fluoro-, chloro-, bromo- and iodomethane have an increasing trend (Table 1: 2–5).
From cycle containing compounds, the values of both TICP and S0 for o-zylene and
p-zylene have changed in the same direction. The corresponding multiple regression
equation is given by Eq. (8).

S0 = 53.4 + 0.102(TIZ) + 0.324(TICP)

N = 100; r2 = 0.92; s = 4.48; F = 576.86 (8)

where, N is the number of data points (compounds) in the data set, r2 is the square of
correlation coefficient, s is standard deviation and F is the F statistic. The statistical
results have been obtained using Minitab Statistical Software Minitab-16 [37].

In order to evaluate the predictive power of the regression model (8), a test set of
10 organic compounds comprising of both cyclic and acyclic structures, is created.
A high predictive power of the regression model is evident from the closeness of the
experimentally observed and predicted values for 10 test compounds (Table 2). It is
apparent from this study that the two information indices TIZ and TICP which reflect
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Table 1 Observed and predicted gas phase thermal entropy (S0) and the values of TIZ and TICP indices
for a training set of 100 compounds

Compound S0(obs)31 S0(pred) (Eq. 8) TIZ TICP

1. Methane 44.52 56.346 17.710 3.610

2. Fluoromethane 53.25 58.761 31.019 6.855

3. Chloromethane 55.97 59.396 37.214 6.855

4. Bromomethane 58.76 60.212 45.179 6.855

5. Iodomethane 60.64 60.714 50.071 6.855

6. Ethane 54.76 59.977 44.039 6.490

7. Fluoroethane 63.34 65.370 62.663 17.245

8. Chloroethane 65.91 66.374 72.467 17.245

9. Bromoethane 68.71 67.749 85.878 17.245

10. Iodoethane 70.82 68.627 94.450 17.245

11. Difluoromethane 58.94 60.914 49.640 7.610

12. Dichloromethane 64.61 63.205 71.994 7.610

13. Dibromomethane 70.10 67.684 115.702 7.610

14. Diiodomethane 73.95 71.842 156.280 7.610

15. Propane 64.58 67.125 75.682 18.544

16. 1-Fluoropropane 72.71 72.886 97.915 29.298

17. 1-Chloropropane 76.27 74.172 110.461 29.298

18. 1-Bromopropane 79.08 76.006 128.359 29.298

19. 1-Iodopropane 80.32 77.215 140.152 29.298

20. 2-Fluoropropane 69.82 70.051 97.915 20.544

21. 2-Chloropropane 72.70 71.336 110.461 20.544

22. 2-Bromopropane 75.53 73.171 128.359 20.544

23. 2-Iodopropane 77.55 74.379 140.152 20.544

24. 1,2-Dichloroethane 73.66 68.747 112.199 12.000

25. 1,2-Diiodoethane 83.30 78.500 207.371 12.000

26. 1-Bromobutane 88.30 84.810 172.383 42.549

27. 2-Bromobutane 88.50 84.575 172.383 41.793

28. 1-Chlorobutane 85.58 82.584 150.667 42.549

29. 2-Chlorobutane 85.94 82.340 150.667 41.793

30. 2-Mehylbutane 82.12 81.272 148.928 39.047

31. Pentane 83.40 81.573 148.928 39.977

32. 2-Methylpentane 90.95 92.234 189.134 60.174

33. 3-Methylpentane 90.77 90.292 189.134 54.174

34. Hexane 92.83 88.593 189.134 48.929

35. 2,2-Dimethylbutane 85.62 87.774 189.134 46.400

36. 2,3-Dimethylbutane 87.42 82.922 189.134 31.420

37. Heptane 102.27 97.957 231.194 64.532

38. 2-Methylhexane 100.38 101.600 231.194 75.777

39. 3-Methylhexane 101.37 104.191 231.194 83.777

40. 2,2-Dimethylpentane 93.30 97.138 231.194 62.003
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Table 1 continued

Compound S0(obs)31 S0(pred) (Eq. 8) TIZ TICP

41. 2,3-Dimethylpentane 98.96 101.355 231.194 75.022

42. 2,4-Dimethylpentane 94.80 92.286 231.194 47.022

43. 3,3-Dimethylpentane 95.53 96.172 231.194 59.022

44. 2,2,3-Trimethylbutane 91.61 94.302 231.194 53.248

45. 2,2-Dimethylhexane 103.06 106.849 274.852 78.172

46. 2,3-Dimethylhexane 106.11 111.067 274.852 91.192

47. 2,4-Dimethylhexane 106.51 111.067 274.852 91.192

48. 2,5-Dimethylhexane 104.93 100.054 274.852 57.192

49. 3,3-Dimethylhexane 104.70 110.419 274.852 89.193

50. 3,4-Dimethylhexane 107.15 106.532 274.852 77.191

51. 1-Chloro-2-methylpropane 84.56 79.748 150.667 33.793

52. 2-Butanol 85.80 83.008 140.438 47.094

53. Ethylamine 68.08 68.618 71.540 24.464

54. Formic acid 59.45 61.891 46.529 11.610

55. 1-Heptanal 110.34 106.128 251.432 83.353

56. 1-Heptanethiol 117.89 112.683 284.006 93.284

57. 1-Hexanol 105.50 101.283 222.704 77.484

58. Methanethiol 60.96 61.222 42.702 10.755

59. Methanol 57.29 60.489 35.549 10.755

60. 2-Methyl-2-butanol 86.70 88.327 180.644 50.794

61. 2-Methyl-2-propanethiol 80.79 77.566 156.154 25.319

62. 2-Methyl-1-propanol 85.81 80.417 140.438 39.094

63. 1-Nitrobutane 94.28 89.998 195.521 51.245

64. Nitroethane 75.39 72.990 114.206 24.464

65. Nitromethane 65.73 65.414 76.839 12.897

66. 2-Nitropropane 83.10 78.396 153.897 28.596

67. 1-Octanethiol 127.20 123.022 333.241 109.627

68. 1-Pentanal 91.53 87.675 166.529 53.245

69. 1-Propanethiol 80.40 76.343 115.948 34.265

70. 1-Propanol 77.61 74.959 102.444 34.265

71. 2-Propanol 74.07 72.123 102.444 25.510

72. Allylalcohol 73.51 71.995 89.471 29.219

73. Propionaldehyde 72.83 71.103 89.471 26.464

74. 1-Propylamine 77.48 76.405 106.793 37.351

75. n-Propylnitrate 92.10 86.311 187.031 42.548

76. 2-Thiabutane 79.62 75.451 115.948 31.510

77. 2-Thiaheptane 107.73 102.354 241.871 74.729

78. 3-Thiaheptane 108.27 102.354 241.871 74.729

79. 2-Thiahexane 98.43 92.963 198.214 59.549

80. 2-Thiapentane 88.84 83.971 156.154 45.094

81. 3-Thiapentane 87.96 79.436 156.154 31.094
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Table 1 continued

Compound S0(obs)31 S0(pred) (Eq. 8) TIZ TICP

82. 2-Thiahexane 68.32 64.920 77.954 11.020

83. Triethylamine 96.90 91.063 227.053 44.559

84. Cyclobutane 63.43 66.971 97.961 11.020

85. Cyclohexane 71.28 76.652 175.020 16.529

86. Cyclopropane 56.75 62.548 63.510 8.265

87. m-Cresol 85.27 93.785 207.194 59.245

88. p-Cresol 83.09 91.194 207.194 51.245

89. 1,2-Dichlorobenzene 81.61 86.720 227.467 31.020

90. 1,4-Dichlorobenzene 80.47 86.720 227.467 31.020

91. 1,2-Diethylbenzene 103.81 108.050 304.402 72.529

92. 1,3-Diethylbenzene 104.99 109.345 304.402 76.529

93. 1,4-Difluorobenzene 75.43 82.845 189.649 31.020

94. Ethylbenzene 86.15 94.998 215.685 60.304

95. Methylcyclohexane 82.06 96.774 216.643 65.484

96. Thiacyclobutane 68.17 70.724 102.348 21.219

97. Thiacycloheptane 86.50 93.045 226.941 50.711

98. Thiacyclopentane 73.94 77.022 142.039 28.106

99. o-zylene 84.31 90.867 215.685 47.549

100. p-xylene 84.23 88.276 215.685 39.550

Table 2 Observed and predicted gas phase thermal entropy (S0) and the values of TIZ and TICP indices
for a test set of 10 compounds

Compound S0(obs)31 S0(pred) (Eq. 8) TIZ TICP

1. 2-Chloro-2-methylpropane 77.00 75.245 150.670 19.991

2. 2-Methyl-2-butanethiol 92.48 85.063 149.077 50.792

3. 1-Nitropropane 85.00 81.199 153.898 37.350

4. 1,1-Dichloroethane 72.91 72.247 112.200 22.849

5. 1,2-Dichloropropane 84.80 79.276 154.263 31.299

6. 3-Methylheptane 110.32 113.817 274.857 99.944

7. 2,2,3,3,-Tetramethylbutane 93.06 91.039 274.857 29.643

8. m-xylene 85.49 92.102 215.685 51.548

9. o-cresol 85.47 93.729 207.194 59.245

10. 1,3-Difluorobenzene 76.57 84.090 189.646 35.020

molecular bulk, size and some kind of topological symmetry, respectively, can be used
as useful molecular descriptors for the prediction of gas phase thermal entropy (S0)

of organic compounds. It may be noted that for some compounds, TIZ or, TICP may
have redundant values although these indices together can discriminate one compound
from another in most of the cases (Table 1).
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In addition to that, Theorem-1 implies that other than mono-atomic species, the
value of TIZ will increase if an atom in a molecule is replaced by another atom of higher
atomic number. This is reflected in the TIZ values of the halogen substituted methane
compounds (Table 1: 2–5). Again, symmetry in molecular structure is believed [29]
to be another factor determining entropy. Although, information theoretical measures
from symmetry of 3D structures of compounds have been proposed on the basis of
point group of symmetry [29], the indices ICP and TICP seem to reflect some kind of
topological symmetry [33–35] in a molecule since it is based on the partition of its
atoms (vertices) from the emergence of similar type of shortest chemical paths from
them. This, in a way, puts topologically similar-positioned atoms in one partitioned
class. Furthermore, total information index TICP includes the number of atoms in a
molecule as a factor taking into account the size aspect too and therefore may be a
more suitable index for the present purpose.

For these topochemical descriptors too, Theorem-1 may be used meaningfully. For
example, the vertices of both cyclopropane (9 vertices) and cyclobutane (12 vertices)
get partitioned into two disjoint classes as (class 1:3 carbons) & (class 2:6 hydrogens)
for cyclopropane and (class 1:4 carbons) & (class 2:8 hydrogens) for cyclobutane.
Therefore, the partitioned classes for cyclobutane may be obtained by adding vertices,
one by one, to the partitioned classes for cyclopropane. For these two compounds,
although the ICP index gets the same value (0.918), the total information index TICP

gets different values giving higher value for cyclobutane (11.020) than for cyclo-
propane (8.265) which corroborates with the result of Theorem-1. It may be noted
that since we were interested in topological aspect of molecular symmetry, we did not
consider bond types such as single bond, double bond etc. However, one can easily
do that, if required, for a given problem.

4 Conclusions

It is evident from the present study that statistically significant regression model
obtained using information theoretical topological indices, TIZ and TICP defined in
this work, along with Theorem-1 may be useful in predicting gas phase thermal entropy
of a large number of organic compounds. The proposed approach is more general in
that it is based on the structural information of both cyclic and acyclic compounds.
While S0 may be predicted from Eq. (8) having the two ITTIs computed, one can
also use Theorem-1 to choose a molecule which can have a higher or, lower S0 value
as may be required. Since the coefficients of the dependent variables in Eq. (8) are
positive, higher TIZ and TICP values would give higher S0 values. Our proposed the-
orem may be useful in better modeling gaseous state of matter, in general, including
compressible gas flows, coefficient of expansion and contraction etc. Finally, we have
also used some definitions as terminologies in this manuscript which may be useful
in categorizing molecular descriptors in the studies where they are used.

Acknowledgments We sincerely acknowledge the financial assistance received from the Department of
Biotechnology, New Delhi.

123



2730 J Math Chem (2013) 51:2718–2730

References

1. N. Rashevsky, Bull. Math. Biophys. 17, 229 (1955)
2. C.E. Shannon, W. Weaver, Mathematical Theory of Communication (University of Illinois Press,

Urbana, 1949)
3. L. Brillouin, Science and Information Theory (Academic Press, New York, 1956)
4. M. Valentinuzzi, M.E. Valentinuzi, Bull. Math. Biophys. 24, 11 (1962)
5. H. Morowitz, Bull. Math. Biophys. 17, 81 (1955)
6. M. Gordon, J.W. Kennedy, J. Chem. Soc. Faraday Trans. II 69, 484 (1973)
7. N. Trinajstic, Chemical Graph Theory (CRC Press, Boca Raton, 1983)
8. A.T. Balaban (ed.), Chemical Application of Graph Theory (Academics Press, London, 1967)
9. A.J. Stuper, W.E. Brugger, P.C. Jurs, Computer Assisted Studies of Chemical Structure and Biological

Function (Wiley-Interscience, New York, 1979)
10. G. Klopman, C. Raychaudhury, J. Comput. Chem. 9, 232 (1988)
11. C. Raychaudhury, A. Banerjee, P. Bag, S. Roy, J. Chem. Inf. Comput. Sci. 39, 248 (1999)
12. C. Raychaudhury, I. Ghosh, Internet Electron. J. Mol. Des. 3, 350 (2004)
13. C. Raychaudhury, D. Pal, Curr. Comput.-Aided Drug Des. 8, 128 (2012)
14. L.B. Kier, L.H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic Press, New

York, 1976)
15. C. Raychaudhury, S.C. Basak, A.B. Roy, J.J. Ghosh, Indian Drugs 18, 97 (1980)
16. D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structures (Wiley-

Research Studies Press, Chichester, 1983)
17. L.B. Kier, L.H. Hall, Molecular Connectivity in Structure-Activity Analysis (Wiley-Research Studies

Press, Letchworth, 1986)
18. H. Hosoya, Bull. Chem. Soc. Jpn. 44, 2332 (1971)
19. E. Trucco, Bull. Math. Biophys. 18, 129 (1956)
20. D. Bonchev, N. Trinajstic, J. Chem. Phys. 67, 4517 (1977)
21. C. Raychaudhury, S.K. Ray, J.J. Ghosh, A.B. Roy, S.C. Basak, J. Comput. Chem. 5, 581 (1984)
22. G. Klopman, C. Raychaudhury, J. Chem. Inf. Comput. Sci. 30, 12 (1990)
23. P. Sarkar, A.B. Roy, P.K. Sarkar, Math. Biosci. 39, 299 (1978)
24. S.C. Basak, A.B. Roy, J.J. Ghosh, in Second International Conference on Mathematical Modeling,

vol. 2, University of Missouri, Rolla (1979), p. 851
25. C. Raychaudhury, J.J. Ghosh, in Third Annual Conference of the Indian Society for Theory of Proba-

bility and its Applications, (Wiley Eastern Limited, New Delhi, 1981)
26. S.C. Basak, V.R. Magnuson, Arzneim.-Forsch./ Drug Res. 33, 501 (1983)
27. A.B. Roy, C. Raychaudhury, J.J. Ghosh, S.K. Ray, S.C. Basak, in Quantitative Approaches to Drug

Design, (Elsevier, Amsterdam, 1983), p. 75
28. C. Hansch, A. Leo, Substituent Constant for Correlation Analysis in Chemistry and Biology (Wiley,

New York, 1979)
29. D. Bonchev, D. Kamenski, V. Kamenska, Bull. Math. Biol. 38, 119 (1976)
30. L.A. Curtiss, M. Blander, Chem. Rev. 88, 827 (1988)
31. J.E. Dean (ed.), Langes’ Hand Book of Chemistry. Table 9–2, 13 Edition (McGraw-Hill, New York,

1985)
32. G.H. Wannier, Statistical Physics (Wiley, New York, 1966)
33. C.A. Shelley, M.E. Munk, J. Chem. Inf. Comput. Sci. 17, 110 (1977)
34. C. Jochum, J. Gasteiger, J. Chem. Inf. Comput. Sci. 17, 113 (1977)
35. R.E. Carhart, J. Chem. Inf. Comput. Sci. 18, 108 (1978)
36. F. Harary, Graph Theory (Addison-Wesley, Reading, 1972)
37. Minitab-16: Minitab Statistical Software: PA, USA (2013)

123


	Information content of molecular graph and prediction of gas phase thermal entropy of organic compounds
	Abstract
	1 Introduction
	2 Methods and theoretical results
	2.1 Vertex weighted molecular graph
	2.2 TopoPhysical Molecular Descriptor (TPMD)
	2.3 Vertex labeled molecular graph
	2.4 Chemical path
	2.5 TopoChemical Molecular Descriptor (TCMD)
	2.6 Information content of graph
	2.7 Information content of vertex weighted graph
	2.8 Information content on shortest chemical path
	2.9 Illustration
	2.10 Theorem-1
	2.10.1 Proof


	3 Results and discussion
	4 Conclusions
	Acknowledgments
	References


